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S U M M A R Y  
Methods for obtaining approximate solutions for the fundamental eigenvalue of the Laplace-Beltrami operator 
(i.e., the membrane eigenvalue problem for the vibration equation) on the unit spherical surface are developed. Two 
types of spherical surface domains are considered: (1) the interior of a spherical triangle, and (2) the exterior of a 

great circle arc extending for less than Jz radians (a spherical surface with a slit). In both cases, zero boundary 
conditions are imposed. In order to solve the resulting second-order elliptic partial differential equations in two 
independent variables, a finite difference approximation is employed. The fundamental eigenvalue is approximated 
by iteration utilizing the power method and point successive overrelaxation. Some numerical results are given and 
compared, in certain special cases, with analytical solutions to the eigenvalue problem. The significance of the 
numerical eigenvalue results is discussed in terms of the singularities in the solution of three-dimensional 
boundary-value problems near a polyhedral corner of the domain. 

1. Introduction 

Boundary-value problems for a partial differential equation which involves the Laplacian 
arise naturally in a wide variety of applications to physics and engineering, such as in 
determining the gravitational or electrostatic potential, in solving Maxwell's equations of 
electromagnetism, and in the theory of elasticity. When the region of the boundary-value 
problem contains corners or edges, the solution may become singular in the vicinity of such 
corners or edges. Furthermore, the nature of the singularity may play a fundamental role in 
the physical application. 

In two-dimensional problems, the singularities in the solution near a corner of a domain 
have been studied thoroughly and are well understood [-1, 2]. For instance, the well-known 
r -~ singularity in the stresses is of significance in the theory of crack propagation in brittle 
materials and in the numerical solution of crack problems [31. In contrast, relatively little is 
known about the solution of a three-dimensional boundary-value problem near an edge or 
corner of the domain [-4, 5]. A preliminary discussion of singularities in three-dimensional 
elasticity problems appears in [-6, 7]. A study of three-dimensional singularities relating to 
the distribution of electrostatic charge in a flat conducting plate is given in [8]. Further 
knowledg e about the nature of three-dimensional singularities would be of importance to 
many areas of application. 
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Consider the solution v(x, y, z) of the Dirichlet problem: 

A v = f i n G ,  v = 0 o n 0 G ,  (1) 

where G is a polyhedron with boundary ~G, v a n d f  are defined in G, and Av = Vxx + vyy 
+ Vzz denotes the Laplacian of v. It is known [4] that the derivatives of v may become 
singular near a vertex of G, and the severity of the singularity is determined by the 
fundamental eigenvalue of an associated eigenvalue problem for the Laplace-Beltrami 
operator on the unit sphere. Methods for obtaining approximate solutions of this associated 
eigenvalue problem will be considered in this paper. Some results will be tabulated, and their 
implications for the singularity in v will be discussed. 

If spherical co-ordinates are introduced such that x -- r sin r cos 0, y = r sin r sin 0, and 
z = r cos r with 0 _< ~b _< zc and 0 _< 0 < 2re, then the Laplacian may be written [9, p. 225] 

Au = r-2(r2Ur) r q- r-ZAu, (2) 

where 

Au = csc O[(u o csc qS)0 + (ue sin qS)~]. (3) 

If the origin of the co-ordinate system is placed at a vertex of G, then the singularity at the 
origin in the solution of problem (1) is related to the eigenvalue problem 

A u + 2 u = O  in D, u = 0  on 0D, (4) 

where D represents the region on the surface of a small sphere (centered at the origin) 
bounded by the polyhedron G. In this paper, the case in which the region D is a spherical 
triangle T, will be considered first, to be followed by a discussion of the case in which D is a 
slit domain, consisting of the exterior of an arc of a great circle on the sphere. 

Without loss of generality, it may be assumed that r = 1. The boundary 3D will consist of 
arcs of three great circles on the unit sphere. The spherical co-ordinate system is defined so 
that the origin of co-ordinates is at the center of the sphere, the z-axis intersects the unit 
sphere at a vertex of T, and the x, z-plane contains a side of Twhich is less than zc radians in 
length. The relevant arcs of the three great circles specifying T are then given by 

0 = 0 ,  0 = O ,  z = a x + b y ,  (5a, b,c) 

where O, a, and b are constants (see Figure 1). Equation (5c), in spherical co-ordinates, 
becomes 

cot r = a cos 0 + b sin 0. (6) 

Equations (5a), (5b), and (6) define two domains on the sphere, the region R(O, a, b) 
specified by 

0 < 0 < O ,  c o t r  (7) 
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Figure 1. The spherical triangle T (its interior R is shown shaded) bounded by arcs of three great circles, specified 
by the parameters O, a, and b. 

and the region S(O, a, b) complementary to R. Both the interior R and the exterior S of the 
spherical triangle T are thus determined by the parameters O, a, and b, which satisfy 0 < O 
< 2re, a n d -  oe < a, b < oe. The eigenvalue problem (4) for the unit sphere, 

Uoo csc ~b + (u o sin ~b)~ + 2u sin ~b --- 0 in D, 

u = 0 on QD, 

(8a) 

(8b) 

where D represents either R or S, has a denumerably infinite sequence of positive eigenvalues 
which may be ordered [9, p. 298] so that 0 < 2 a < 22 _< 23 _<...,  as well as a corresponding 
sequence of linearly independent eigenfunctions Ul, u2, . . . .  In this paper, the fundamental 
(smallest positive) eigenvalue of equation (Sa) will be determined, subject to the boundary 
condition (8b), for the following two cases: (1) when D is the interior R of a spherical 
triangle, and (2) when D is the exterior S of a spherical "triangle" which has degenerated to a 
line in the special situation: O = 0. In order to solve the second-order elliptic partial 
differential equation (Sa) in two independent variables 0, ~b, a finite difference approxi- 
mation is derived. The resulting finite difference equations are written in matrix form and 
then solved by the iterative method of point successive overrelaxation. Upon convergence, 
the fundamental eigenvalue is found by iteration utilizing the power method as applied to 
the finite Rayleigh quotient. Numerical results for a number of cases are presented, and the 
implications for the singularities in three-dimensional polyhedral boundary-value problems 
are discussed. 
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2. Finite difference approximation 

In problems involving elliptic partial differential equations for which a general analytic 
solution is not known, such as equation (8), the method of finite differences is commonly 
employed to determine numerical results. In the following, the domain D on the spherical 
surface is taken to be the interior R(O, a, b) of a spherical triangle, with 0 < O < 2re. A 
rectangular network of grid points (0~, 4)~), i = 0, 1, 2 , . . . ,  No; j = 0, 1, 2 . . . .  , N 0 is estab- 
lished throughout the 0, 4)-plane. N o and N o represent the number of grid intervals in the 0- 
and 4)-directions, respectively, so that hoN o = O, where h o is the constant grid spacing in the 
0-direction. In consideration of the singularity at the north pole, where two boundaries of 
the spherical triangle meet at a point with a discontinuous tangent (i.e., a corner), variable 
grid spacing in the 4)-direction is introduced through the parameter, 

ho, j = O j -  Oj_l > O, j = 1, 2 , . . . , N  o . (9) 

Grid points in the 4)-direction are specified by 

4)J = ~ - /  ~- for j -- 0, 1, 2 , . . . ,  �89 (10) 

= ~N o + 1, }N o + 2 , . . . ,No ,  - 4)N,-j for j 1 

where N o is assumed to be an even integer and 7 is a positive constant. If 7 = 1, then formula 
(10) reduces to a uniform grid spacing, 4)j = jT~/No, for all j, where N o need not be even. If 
7 > 1, the density of grid points increases toward the poles, 4)o = 0 and 4)N, = u, and 
decreases toward the equator, 4)N,/: = u/2, and conversely, if ?: < 1. For all ),, grid points in 
the 4)-direction are symmetrically placed about the center point or equator. 

If the exact solution to equation (Sa) is denoted u = u(O, 0), then let its approximation at 
each grid point be U = U(O~, 4)j) = Ui, j. To approximate the second-order partial derivative 
in the first term of equation (Sa), the centered second difference quotient [10, pp. 430-431], 

1 
U o o ~ , - 5 - ( U i + l j - 2 U i j + U i  l j), (11) 

h 0 , , - , 

is utilized. Using the midway (or averaged) grid points, 

4)j+~ = 1(4)j + 4)j+1)} �9 
4)j_~ }(4)j + 4)j_l)_j -- 1, 2 , . . . ,  N o - 1, (12) 

the first-order partial derivative in the second term of equation (8a) may be approximated 
by a centered midway first difference quotient, 

(u~ sin 4))o - (u~ sin 4)hj+~ - (uo)i,j_ ~ sin 4)~_~ (13) 
-~( O,J+ 1 + ha,j) 

To approximate the terms involving uo, a centered first difference quotient is employed: 

U i j + l  --  U i j  U i j -  U i j -  1 
(uo)i,j+ ~ ~- . . . . .  , (u~)~,j_~ - ' ' (14) 

ha, j+ 1 ho , j  
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Combining equations (13) and (14) results in the approximation, 

(ucsinqS)o~ 2sin~bj+~ U ~ , j +  1 - Ui ,  j _ 2sinq~j__~ �9 U i ' J -  U~ 'J -1  (15) 
h4~,j+ l + hgo,j h4~,j+ l hr  q- h4~,j hga,j 

The finite difference approximation to equation (8a) may be written, by use of equations (11) 
and (15), as 

cscCj 2sinq~j+~ ( ' h * ' J + l  ' ) 
(Ui+l,j_ 2Ui,j + U i _ l , j ) ~ o  ...[ - h4~,J+l + hg,,J Ui j+l - Ui j 

2 sin Cj_~ ( . U i j - - U i j _ l )  
' ' + 2U~,j sin Cj = 0. 

hr ~ -I- h4~,j h(o,j 
(16) 

Appropriate multiplication and re-arrangement of terms yields a symmetric five-point 
difference equation of the form: 

ajUi,  j - b jUi+ l, j - c jUi , j+  1 - b j U i _  l, j - r  l Ui , j_  l = ,~ejUi, j, (17) 

where 

bj = csc ~ j  
hZo (h4,,j+l + he,j), (18a) 

2 sin 4~j + 
cj - , (18b) 

he, j+ 1 

ej = (he, j+ 1 + he,j) sin Cj, (18c)  

and 

aj = 2bj + cj + c j_ r (18d) 

In terms of grid points in the C-direction, by virtue of equations (9) and (12), 

by - 4)1 + 1 - r 
h 2 sin gb~ > O, (19a) 

2 sin �89 + Cj+a) .~ O, (19b) 
cj  = C j+  ~ _ r  

and 

ej = (r - r  sin ~bj > 0. (19c) 

The boundary conditions (8b) must be imposed on the discretized version (17) of the 
eigenvalue equation. Along the meridional boundaries (5a) and (5b), U0, j = UNo,j = 0 for 
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all j, and Ui, j = 0 for those grid points (i,j) such that 

cot Cj < a cos 0 i + b sin Oi, (20) 

as a result of condition (7) pertaining to the spherical triangle interior R. Furthermore, 
Ui, o = Ui.N, = 0 for all i, a t  the north and south poles of the sphere. In the limiting cases 
of a, b ~ - oe (either or both), the triangle boundary, according to equation (6), includes 

the south pole, q5 = zr. 

3. Iterative ca lcu lat ion  o f  the f u n d a m e n t a l  e igenvalue  

In a matrix formulation of the finite difference equation (17), let I denote the number of grid 
points which are interior to the spherical triangle, i.e., those which violate inequality (20). 
Let U represent an/-dimensional  vector whose components are the unknown values Ui, j 
associated with the interior grid points. The components of U are ordered rowwise, such 
that successive constant ~b grid lines are each scanned in order of increasing 0 values. With 
this natural ordering of the grid points [11, p. 187], equation (17) may be written in matrix 
form as A U  = 2EU, where A and E are symmetric square matrices of order I. A is sparse 
and consists of positive diagonal entries and non-positive off-diagonal entries, while E is a 
diagonal matrix with positive diagonal entries. The entries of both A and E depend only on 
thej  index. Define a square matrix Vof order I by V -- E~U, where E ~ is the diagonal matrix 
consisting of entries which are equal, respectively, to the square roots of the elements of E. 
With this definition, the matrix form of equation (17) may be transformed to 

J~V = E - ~ A E - ~ V  = 2V, (21) 

where the diagonal matrix E -+ is the inverse of E ~ formed by taking reciprocals of the 
respective diagonal entries of E ~. The matrix A - E T~AE  -~ retains the symmetry property. 

The fundamental eigenvalue of A may be determined by the power method [ 12, pp. 147 if; 

13, pp. 355-356]. Define the sequence of vectors, 

W (re+l )  : 2(m)A-1V (m), /TI = 1, 2 . . . .  , 

where the scalars 2 <') are given by the ratios of inner products, 

(22) 

2(., ) (V <"), V/m)) 
- ~ m = 1, 2 , . . . .  (23) 

( A  - ~ V <m), V<m>) ' 

The limit V (m) as m ~ oo is the eigenvector associated with the fundamental eigenvalue of A, 
the latter of which is approximated by the finite Rayleigh quotient (23). In terms of the 
original vector U, it is seen that U <m) = E - ~ V  (") and A-1 = E~A-1E~ ' so that equations (22) 

and (23) become 

u(m+ 1) = 2(re)A- 1EU(m), m = 1, 2 , . . .  (24) 

~jm) = (U(''), Eu(m)) 
(A_IEU(m) ' Eu(m)),  m = 1, 2 , . . .  (25) 

and 
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As an initial estimate, U (1) is defined to have all components equal to unity. 
The power method (24)-(25) requires solving equations of the general form A U  = F for 

the vector U, where F represents the vector iterates EU ('). For this purpose, the iterative 
method of point successive overrelaxation [-11, pp. 58-59] is applied to the system of linear 
equations (17) and produces iterates U (k) whose components are given by 

[bjU ~ r ( k )  , ( k +  1 )  u(k+ 1 )  u!k+l) = Ik)+l,j + Cj(Ji, j+l -~- b jUi - t , j  + c~-1 i,j-1 + Fi, j] + (1 - co)tJi, j,'''(k) ~'J aj 

k =  1,2 , . . .  (26) 

The k-superscripts indicate an iteration process, here called the inner iterations, distinct 
from the m-iterates, or outer iterations, specified in the power method. The vectors U and F, 
of course, depend upon the iteration index m, although this has not been indicated explicitly 
in equation (26), so as to preserve legibility. The vector inner products in the Rayleigh 
quotient (25) may be written in component form as 

~ i,j (U ('), EU (m)) Z (27a) 

and 

(27b) 

where the double summations are taken over grid points interior to the spherical triangle. 
The scalar relaxation factor co is evaluated, as described below, based upon the maximum 
component norms for successive inner iterates of the vector U, 

T r(k) e(k) ----_ max iul,k+ 1) _ ()i,j[, k = 1, 2 . . . .  (28a) 
i,j 

and the ratios, 

r (k) - e(k)/e(k-1), k = 2, 3 , . . . ,  (28b) 

calculated during the inner iterations. 
Convergence of the successive overrelaxation (S.O.R.) iterates (26) for any initial vector 

U (1) and for a relaxation factor in the range 0 < co < 2 follows from the Ostrowski-Reich 
theorem [14, p. 123] and the fact that A may be shown to be a symmetric irreducibly 
diagonally dominant matrix with positive diagonal entries, which is therefore positive 
definite [11, p. 23]. Although the S.O.R. method will converge for all co such that 0 < co < 2, 
the most rapid convergence occurs for an optimal value (/)opt' where 1 < coopt < 2. A 
theoretical expression for COop t exists [11, p. 110] since the Jacobi matrix B associated with 
the matrix A is cyclic of index 2, but this expression depends on the spectral radius of B, a 
quantity that is not, unfortunately, known a priori. To overcome this difficulty in 
determining COopt, a numerical technique [13, pp. 369-370] is applied. If co is set equal to 
unity in equation (26), then the S.O.R. method reduces to the point Gauss-Seidel iterative 
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method, in which case the parameters defined in equations (28) will converge to a value, 

lim r (k) = r _< 1, (29) 
k--* oo 

equal to the square of the desired spectral radius of B. Then COop t can be computed by 

2 
- (30) O) op t 

1 + . / 1  - r 

The algorithm utilized for the solution of the eigenvalue problem on a digital computer, 
described in detail in [15], is a modification of a method suggested in [13, pp. 375-376]. 

4. Analytic solutions for special cases 

The elliptic partial differential equation (8a) can be solved analytically for certain special 
cases, and such exact solutions are useful in providing checks upon numerical calculations 
based upon the finite difference approximation. Using the separation of variables technique, 
in which u(O, O)= X(O)Y(4)), the analytic solution to equation (8a) is known [9, pp. 314ff, 
510if] to consist of the Laplace spherical harmonics, 

X(O) = A sin kO + B cos kO, 

Y(qS) = P.,k(COS qS) = (1 -- Z2) k/2 dk P,(z), k = 0, 1, 2 , . . . ,  n, 

(31a) 

(31b) 

where A and B are arbitrary constants, k 2 is a separation constant, n is defined by 2 = 
n(n + 1), and P,,k are the associated Legendre functions of order k. The Legendre func- 
tions of order zero, P,(z)= P,,o(Z), are polynomials in z -  cos q5 of degree n. The 
boundary condition (8b) requires that u(0, qS)= u(O, qS)= 0, so that the solution (31a) 

becomes 

" ( ~ r ) 0  (32) X(O)=Asm ~- , 

where k = n/O is chosen so that X(O) vanishes only at the endpoints of the interval, 

0 < 0 < O .  
For the special case k = n, Y(~b) reduces to a multiple of (sin q~)k and the solution 

X(O) Y(~) is 

( ~ 0 )  (sin qS) ~/~ u(O, 4)) = A sin ~ -  (33) 

with the corresponding eigenvalue, 

,~=N + 1  (34) 
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When A r 0, the eigenfunction (33) vanishes only for 0 = 0, O and 49 = 0, ~ in the domain, 
0 _< 0 _< O < 2re; 0 _< 49 _ re, and thus represents a solution for a two-sided spherical wedge- 
shaped domain bounded by meridional great circle arcs extending between the north and 
south poles. The wedge domain is the degenerate spherical triangle R(O, O, - oo) when 0 
< O _ re; however, when zc < O < 2~r, the wedge does not appear as a limiting case of the 

spherical triangle. 
For  the special case k = n - 1, since the Legendre functions P,(z) are polynomials in z 

containing terms only of even or odd powers of z, as n is even or odd, respectively, then Y(49) 
reduces to a multiple of (sin 49)k cos 49, and the solution X(O) Y(49) is 

u(O, 49) = A sin ~ -  (sin 49)~/o cos 49, (35) 

with the corresponding eigeiavalue, 

(36) 

For A r 0, the eigenfunction (35) has the same zeroes as previously with an additional zero 
at 49 = z~/2. Thus, equation (35) represents an exact solution for the spherical triangle 
defined by the domain, 0 _< 0 _< O < 2~; 0 _< 49 < re/2, which is bounded by two meridional 
arcs and the equator, viz., R(O, 0, 0) for 0 < O < 2~. 

In the limit O = 2re, the solution (33) is u(O, 49) = A sin (0/2)(sin 49)~, with corresponding 
eigenvalue 2 = �88 The wedge domain becomes the entire surface of the sphere except for a 
boundary great circle arc 0 = 0, 0 _ 49 _< ~z extending between the poles. Equivalently, this 
domain is the exterior of a spherical triangle in the limit O -- 0, as will become significant in 
the problem of a slit spherical surface discussed later. In the limit O -- 2re, the solution (35) is 
u(O, 49) = A sin (0/2)(sin 49)~ cos 49, with corresponding 2 = ~ .  The degenerate spherical 
triangle domain R(2~, 0, 0) is the entire upper hemisphere excluding a boundary great circle 
arc 0 = 0, 0 < 49 < re/2 extending from the north pole to the equator. 

5. Discussion of numerical results 

Consider first spherical triangles which contain two right angles and where the boundary 

great circle arcs are formed by the equator, z = 0, and two meridional arcs. Such spherical 
triangles R(O, 0, 0), where 0 < O < 2~r, are associated with the fundamental eigenvalue (36). 
Table 1 displays calculated and exact values for 2 for three values of O and for various 
rectangular grids, all of which utilize constant 0- and @spacing (?, = 1). For all numerical 
results discussed in this paper, convergence criteria of 10- 6 are used for terminating both the 
inner iterations, through the maximum component norm (28a), and the outer iterations, 
through absolute differences of successive values of the Rayleigh quotient (25). Table 1 
includes the calculated value for the optimal co, the required number m of outer iterations to 
achieve convergence in 2, and the required number k m of inner iterations to achieve 
convergence of U by S.O.R. for the final outer iteration. The relative error in 2, given by 

( 2  . . . .  t - -  / ~ c a l c u l a t e d ) / ~  . . . .  t '  is approximately 0.03 for the N o = N o = 10 grids, and 0.008, 0.003, 
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TABLE 1 

Fundamental eigenvalues of double right spherical triangles (a = b = O) using constant grid spacing (y = 1) 

Spherical Rectangular Fundamental Optimal Required Required 
triangle grid eigenvalue scalar number of  number of  
parameter parameters )~ relaxation outer S.O.R. inner 
0 N o = N4~ factor iterations iterations at 

Calculated Exact co m convergence 

value value k m 

10 5.831 6 1.460 8 24 
20 5.958 6 1.695 8 48 

n 30 5.981 6 1.796 8 71 
40 5.990 6 1.860 8 99 

n/2 10 11.628 12 1.506 8 27 
n/2 20 11.907 12 1.723 10 49 
n/2 30 11.959 12 1.807 11 73 
n/2 40 11.977 12 1.850 11 97 

~/3 10 19.338 20 1.518 12 27 
~/3 20 19.836 20 1.729 13 50 
~/3 30 19.927 20 1.806 13 78 
~/3 40 19.959 20 1.846 13 110 

TABLE 2 

Fundamental eigenvalues of double right spherical triangles (a = b = O) 
using variable grid q~-spacings (7 = 2, �89 

Spherical Rectangular Fundamental eigenvalue 
triangle grid 2 
parameter parameters 
0 N o = N o Calculated Exact 

value value 
(Y = 2) 

Calculated 
value 
(7 = ~) 

10 5.750 6 5.118 
20 5.931 6 5.592 

n 30 5.969 6 5.773 
40 5.983 6 5.856 

n/2 10 11.368 12 10.692 
n/2 20 11.798 12 11.739 
n/2 30 11.910 12 11.919 
n/2 40 11.949 12 11.969 

n/3 10 19.123 20 19.061 
n/3 20 19.609 20 19.888 
n/3 30 19.825 20 19.961 
~/3 40 19.902 20 19.979 
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and 0.002 for the N o = N o = 20, 30, 40 grids, respectively. The relative errors, for a given set 
of grid parameters, are smallest for O = n and largest for O = n/3. 

Table 2 shows the effects of variable grid ~b-spacing. Grids in which the density of points 
increases symmetrically toward the poles (7 = 2) and, conversely, symmetrically toward the 
equator (7 = �89 were considered with the same spherical triangles and grid parameters as 
previously. Variable grid spacing produces generally larger relative errors in the calculated 2 
except for the finer three grids when O = n/3, in which case the results for 2 when 7 = �89 are 
more accurate than the constant grid spacing results. When 7 = �89 and O = n/3, the relative 
error in 2 is approximately 0.047 for the N o = N o = 10 grid, but 0.006, 0.002, and 0.001 for 
the 20, 30, and 40 grids, respectively. Apparently, variable grid spacing to account for the 
singularity in q5 can produce more accurate calculated values for 2, depending upon the 
particular characteristics of the spherical triangle. 

Table 3 is limited to O = 2n only, in which the degenerate domain is the upper 
hemisphere with boundaries consisting of the equator and one meridional great circle arc (a 
"slit") between the north pole and equator and where 2 was analytically found to be ~-. With 
constant grid spacing, the convergence in 2 is monotonically decreasing, in contrast to 
previous results. 

TABLE 3 

Fundamentaleigenvalue ~ s l i t u p p e r h e m i ~ h e r e ( a  = b = 0 ; 0  = 2n )us ingcons tan tgr idspac ing (7=l  ) 

Rectangular Fundamental Optimal Required Required 

grid eigenvalue scalar number of  number of  

parameters 2 relaxation outer S.O.R. inner 

N o = N~ factor iterations iterations at 
Calculated Exact co m convergence 

value value k m 

10 3.845 3.75 1.385 10 21 

20 3.826 3.75 1.647 10 42 

30 3.806 3.75 1.760 10 59 

40 3.794 3.75 1.837 9 83 

The degenerate case of the spherical wedge appears in Table 4. When O = n with a = 0, 
b ~ - 0% the wedge becomes a hemisphere, with 2 = 2, as given by equation (34). When 
n < O < 2n with a = 0, b ~ -  oe, the relevant domain remains the hemispherical wedge, 
with 2 = 2, since the only value of ~b in the domain for a = 0, b ~ - 0% and n < 0 < 2n is 
~b = 0, the north pole, by inequality (7). For  the quarter-spherical wedge (O = n/2) and the 
hemispherical wedge, the convergence in 2 is monotonically increasing and quite rapid, with 
the refinement in grids. When O = 3n/2, 2g, the convergence in 2 is also monotonically 
increasing, but at a considerably reduced rate, probably because a larger proportion of the 
grid points are "superfluous," i.e., occur outside the spherical wedge domain. 

Table 5 considers so-called oblique spherical triangles representing the general problem 
with unknown fundamental eigenvalue. A parametric family of spherical triangles R(O, O, 
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TABLE 4 

Fundamental eigenvalues of spherical wedges (a = O, b --* - oo) using constant grid spacing (7 = 1) 

Spherical Rectangular Fundamental Optimal Required Required 
triangle grid eigenvalue scalar number of number of 
parameter parameters 2 relaxation outer S.O.R. inner 
0 N o = N o factor iterations iterations at 

Calculated Exact co m convergence 
value value k,, 

n/2 10 5.926 6 1.543 8 29 
n/2 20 5,982 6 1,750 8 54 
~/2 30 5.992 6 1,808 9 95 
~/2 40 5.995 6 1,854 9 122 

10 1,977 2 1.572 6 31 
20 1.994 2 1,774 6 59 
30 1.997 2 1.824 6 101 
40 1.999 2 1,838 6 177 

3~/2 10 1.828 2 1.512 6 26 
3n/2 20 1.852 2 1,722 6 48 
3n/2 30 1.917 2 1.830 6 73 
3~/2 40 1.961 2 1.848 6 90 

2~ 10 1.929 2 1,465 6 23 
2~ 20 1.972 2 1,686 6 45 
2~ 30 1,982 2 1.788 6 62 
2n 40 1.987 2 1.845 6 83 

~r/4 

Tr/2 ' 

"rr/4 

SOUTH POLE 

7r/2 

-cot ~b = -s in  0 

- - 2 0  
-rr ~'rr/2 2"rr 

Figure 2. Interior domains of oblique spherical triangles defined by the parametric values a = 0, b = - 1; O = n/2, 
~z, 3n/2, and 2n (indicated by the shaded regions to the left of each of the four respective 0 = O values) 
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TABLE 5 

Fundamental eigenvalues of oblique spherical triangles (a = O, b = - 1) using constant grid spacing (7 = 1) 
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Spherical Rectangular Calculated Optimal Required Required 
triangle grid fundamental scalar number of number o f  

parameter parameters eigenvalue relaxation outer S.O.R. inner 
0 N o = N~, 2 factor iterations iterations at 

co m convergence 
km 

~/2 10 7.392 1.520 8 28 
n/2 20 7.569 1.731 10 49 
g/2 30 7.633 1.809 11 77 
n/2 40 7.668 1.854 11 100 

10 2.795 1.519 6 28 
20 3.027 1.724 7 52 
30 3.000 1.823 8 76 
40 3.061 1.843 8 118 

3n/2 10 2.435 1.476 8 24 
3n/2 20 2.615 1.697 7 47 
3n/2 30 2.631 1.796 8 66 
3n/2 40 2.664 1.844 8 88 

2n 10 2.396 1.435 8 22 
2~ 20 2.581 1.665 8 42 
2~ 30 2.597 1.771 8 57 
2~ 40 2.652 1.811 9 92 

- 1) is considered, where O assumes the values, z~/2, re, 3n/2, and 2re. The oblique plane z = 
- y  defines the non-meridional side (5c) of the spherical triangles and intersects the equator 
at an angle of re/4 at the points 0 = 0, n, and 2n (see Figure 2). For three O values, 
convergence of 2 is monotonically increasing with the grid refinement, but when O = ~z, 
oscillatory behavior in 2 occurs, an anomaly which has previously been observed [-13, pp. 
351-352] in the numerical calculation of fundamental eigenvalues. Furthermore, when O 
= 3zc/2, 2re, the convergence in 2 is less uniform than in the earlier results for known 
solutions, possibly as a consequence of the boundary transcendental curve in the 0, @plane 
(see Figure 2). The grid point approximation to the curved southern boundary of the 
oblique spherical triangle (present in the general problem) varies somewhat with the grid 
parameters No, N~, a situation which was avoided in the earlier results when all boundaries 
coincided with constant-value 0 and q5 great circle arcs. 

6. Problem of a spherical surface with a slit 

6.1. Boundary conditions for the slit domain 

The problem of determining the fundamental eigenvalue for a domain which is the exterior 
of a spherical "triangle" when O = 0 will now be considered. In the limit, the triangle 
degenerates to a meridional great circle arc or "slit," which may be assumed, without loss of 
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generality, to extend from the spherical north pole along a great circle arc. The slit domain 
may be specified by a slit extension parameter ~b, where 0 < q~ < 7r, and is determined from 
equation (6) to be q~ = arccot a -- arcsin(a 2 + 1) -~, with b arbitrary. 

A rectangular uniform network of grid points (0i, qSj), i = 0, 1 , . . . ,  No; j = 0, 1 . . . .  , N o 
is superposed over the entire spherical surface, 0 _< q~ _< re; 0 _< 0 <__ 2~z, so that the relations 
between the number of grid intervals and the constant grid spacings are hoN o = 2~z, and 
hoN ~ = re. I n  the 0, @plane, the slit appears along portions of three of the rectangular 
boundaries, viz., the entire line representing the north pole q5 = 0, and like portions of 
the two lines representing the slit meridian, 0 = 0, 2re. In general, the slit boundary will 
not terminate on a grid point. 

The boundary conditions (8b) to be imposed on the discretized version of the eigenvalue 
equation for the spherical surface with a slit are Ui, 0 -- 0 for all i at the north pole of the 
sphere, and Uo, j = UNo, j = 0, for allj  such that ~bj _< q~, along the slit boundary. In general, 
non-zero Ui, j occur on the rectangular grid boundary along the slit meridians beyond the 
extension of the slit (Uo, j and UNo, j for which qSj > q~) and at the south pole (Ui, No for all i). 
The finite difference equation (17) is valid for all grid interior points (0~, qSj), i = 1, 2 . . . .  , 
N o - 1; j - -  1, 2 , . . . ,  N o - 1, but must be modified for grid boundary points which do 
not coincide with the slit. Since the lines i = 0, N o coincide on the spherical surface, 
the following periodic boundary conditions must be imposed: U0, J -- UNo, j for all j such 
that qSj > ~b. Equation (17) may thus be extended to the line i = N O by replacing the 
undefined UNo + t,j by U~,j, for all j, as necessary, viz., 

ajUNo,j - b j U l , j  - C jUNo,  j+ 1 - -  b j U N o - 1 , j  - c j - 1 U N o ,  j - 1  = 2 e j U N o ,  j 

for j = 1 , 2 , . . . , N  0 -  1, if qSj > ~, (37) 

with a j, b j, c j, and ej defined as previously. 
Difference equations for grid points at the south pole may be derived by integrating the 

partial differential equation (8a) over the disc 0 < 0 < 2re; qSN,_ ~ < ~b < qSNo = zc (see 
Figure 3). Because of the 2z periodicity in 0, it is seen that 

- uo(O , (oN~_}) sin ON,_}dO + 2 u sin gpd~pdO = O. 
=0  =0  N~-~- 

(38) 

The first integral may be approximated, by the centered first difference quotient (14), as the 
finite sum, 

N~ ( U i N 4 - - U i N * - l  )hosinON~_~,  
i = 1 he, N~ 

while the second term may be approximated by 

(39) 

2UI, N,(2~)[-- cos ~b] I~No_~ = 2rc2Ui,N~(1 + cos q~N~-~). (40) 

Of course, Ui, No represents the unique approximate value (which may arbitrarily be denoted 
Ul,u+ ) of the solution u at the south pole for all i. Substituting these approximations in 
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0N0/4 = 7 r /2  

313 

0N0/e : 

05N 0/4 = 37r/2 

,,. ao= o; 8N0: 2Tr 

Figure 3. Disc (indicated by shading) utilized to derive difference equations valid at the spherical south pole. 

equation (38) and re-arranging yields 

No 4~ 
2 s i n  qSN~__~ ~2 (Ui, No -- Ui, N~-I) = ~-0 (1 + cos  ON~_�89 N~. 

ha, NO i = 1 
(41) 

Define 

47c 
eN, = ha (1 + cos qSN,_~), (42) 

which, by equation (12), may be rewritten as 

eu+ = 2N0(1 sin > 0. - (43) 

Equation (41) may thus be written, using definitions (18b) and (42), as a finite (N o + 1)- 
point difference equation for the component of U at the south pole: 

No 

cuo-t(NoU1,N~ - Z Ui, N@-I) = 2eN~U1,N,. (44) 
i=1 

6.2. Solution for the fundarnental eigenvalue 

The finite difference equations may again be written in matrix form as AU = 2EU, where 
the power method and the S.O.R. iterates are used to approximate 2. The vector 
dimensionality of U is equal to the number of grid interior points, (N o - 1)(N~ - 1), plus 
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the number of grid boundary points along the slit meridian beyond the slit, including the 
single south polar point. The point S.O.R. method utilizes equation (26) for grid interior 
points; for grid boundary points along the slit i = No, in accordance with equation (37), 

u(k+l) = ~ [ ' ] ~  T[(k+l) rr(k) h /T(k+l) o r/~(k+l) (k) 
No,; aj LVJVl'J + CJ'~So'S+ ~ + ~;~No- 1,j + ~S- 1 ~No, j -  ~ + Fso,j] + (1 - co)UNo,j 

f o r j = l ,  2 . . . .  , N  6 - 1 ,  if ~b j>4 ;  k = l ,  2 . . . .  (45) 

The iterates associated with the south pole, are, in accordance with equation (44), 

l[( k+l, CO IN__~I /-T( k+l, F1,N ~ 
= ~i,u~-a + ~- + (1 -co)U(lk)u,, k = 1, 2 , . . .  (46) 

Vl'N~ No i cN~-I J ' 

Due to the complicated nature of the difference equation (44) at the south pole, the Jacobi 
matrix associated with A is not necessarily cyclic of index 2, as previously. Thus, the 
expression (30) for COop t no longer rigorously applies, and the actual optimal CO is unknown. 
However, it has been suggested [13, p. 262] that the value produced by the formula (30) may 
be reasonably close to the unknown optimal CO, even under such conditions. For this reason, 
the expression (30) is used for approximating COopt in the computer algorithm, described in 
detail in [15], used to produce the numerical results that follow. 

6.3. Numerical results 

Table 6 displays calculated values of 2 for each 4 = n(n/8), n = 1, 2 . . . . .  7 and for the usual 
rectangular grids, assuming uniform grid spacing (7 = 1) throughout. The convergence in 2 
with increasing grid refinement for given 4 is by no means monotonic, in contrast to most of 
the spherical triangle problem results. Note that convergence in 2 occurs more slowly (1) for 
a finer grid than for a coarse grid, and (2) as the slit extent decreases. The generally slower 
convergence of the S.O.R. iterations, in comparison with the problem of the spherical 
triangle, is related to the fact that the optimal co is unknown for the slit problem. 

Further investigations were conducted for values of 4 near the polar limits 0, n for the slit 
boundary (Table 7). To avoid'singularities at the poles, two values, 41 and42 ,  such that 
0 ( 1191 < Tg/N O and • - (~r/N4,) < 0 2 < ~r were assumed by �9 so that none of the grid points, 
except those at the north pole, would coincide with the slit boundary (for 41 ~ 0) and so 
that all of the grid points along the slit meridian, except those at the south pole, would 
coincide with the slit boundary (for 42 -- ~), regardless of N 0. The calculated 2 display a 
monotonic decrease for 4 ~ 0 and a monotonic increase for 4 ~ re, with the grid 
refinement, and are in agreement with the Table 6 trend. The calculated 2 as a function of 4 
are graphed for three grids in Figure 4 (N o = N o = 30 is omitted to preserve legibility). A 
nearly linear relationship is observed, with a slope, d2 /d4  ~- 0.2 (radians)- 1. The case 4 = lr 
was previously solved analytically, as the limit of a spherical wedge domain, for the exact 
value 2 = 3, a result in excellent agreement with Table 7 and Figure 4. The limit as 4 ~ 0 
(and the slit spherical surface degenerates to a punctured sphere) tends rather slowly, in 
Figure 4 and Table 7, to the true value 2 -- 0, with the grid refinement. The use of still finer 
grids in which N o > 40 indicates (Table 8) that this convergence, 2 ~ 0, proceeds quite 
gradually. 
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TABLE 6 

Fundamental eioenvalues of a spherical surface with a slit 
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Slit Rectangular Calculated Near- Required Required 

extension grid fundamental optimal number of number of 

parameter parameters eigenvalue scalar outer S.O.R. inner 
q9 N o = N ~ 2 relaxation iterations iterations at 

factor m convergence 
co k m 

~/8 10 0.209 1.794 4 90 
~/8 20 0.193 1.900 4 195 
~/8 30 0.188 1.937 5 283 
~/8 40 0.199 1.960 5 317 

~/4 10 0.263 1.773 4 80 
~/4 20 0.273 1.883 5 164 
~/4 30 0.259 1.926 5 245 
~/4 40 0.265 1.953 5 271 

3~/8 10 0.317 1.755 5 73 
3~/8 20 0.325 1.874 5 150 
3~/8 30 0.327 1.917 5 223 
3~/8 40 0.329 1.949 5 242 

n/2 10 0.427 1.722 5 61 
n/2 20 0.406 1.860 5 133 
n/2 30 0.399 1.910 5 198 
n/2 40 0.396 1.941 5 229 

5~/8 10 0.486 1.705 5 56 
5n/8 20 0.465 1.851 5 122 
5n/8 30 0.457 1.905 5 180 
5n/8 40 0.469 1.936 5 203 

3~/4 10 0.550 1.688 5 51 
3n/4 20 0.563 1.835 5 104 
3n/4 30 0.544 1.884 5 182 
3n/4 40 0.551 1.897 6 295 

7~/8 10 0.619 1.668 6 46 
7n/8 20 0.637 1.811 6 100 
7n/8 30 0.644 1.860 6 169 
7n/8 40 0.647 1.880 6 262 

7. Singularities in three-dimensional problems 

Let v(x, y, z) be the solution of the Dirichlet problem (1) in a polyhedral domain G. The 
singular behavior of v in a neighborhood of a vertex of G is of interest. Knowledge about this 
problem is quite limited [-4, 5], as mentioned earlier; however, an intuitive idea of what to 
expect may be obtained from the following considerations. Assume a vertex of G is placed at 
the origin O, and, as before, let D be the intersection of the domain G and the surface of a 
small sphere with center at O. If u(O, cb) is a solution of the eigenvalue problem (4), and if a is 
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TABLE 7 

Fundamental eigenvalues of  a spherical surface with a slit 

H. Walden and R. B. Kellogg 

near slit boundary polar limiting values 

Slit Rectangular Calculated Near- Required Required 
extension grid fundamental optimal number of  number of  
parameter parameters eigenvalue scalar outer S.O.R. inner 

N o = N~ 2 relaxation iterations iterations at 
factor m convergence 
co k,, 

0 10 0.147 1.825 4 110 

0 20 0.123 1.919 4 249 

0 30 0.112 1.950 4 383 

0 40 0.105 1.971 4 459 

10 0.697 1.646 6 40 

20 0.724 1.790 6 87 

30 0.733 1.843 6 143 

40 0.737 1.863 6 222 

0.8 

0.7 
,,< 

�9 d 0 .6  

z 
I.o 
(.9 
i~ 0,5 
_..,I 

7 
t.O 0.4 
< 
c3 
z 

u_ 0.3 
1:21 
la.I 

_J 
0.2 

..3 < 
r 

0.1 

B 

B 

RECTANGULAR GRID PARAMETERS 

v NO: N,#:IO 

o N O = N4, = 20 

0 N o = N@=40 

0 
0 "rr/8 ~14 3"rr/8 "rr/z 5"rr/8 5"rr/4 77r/8 7r 

SLIT EXTENSION PARAMETER, f f#(mdians) 

Figure 4. The calculated fundamental eigenvalue 2 as a function of the slit extension parameter ~b for various 

rectangular grids (N o by N~ intervals). 
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TABLE 8 

Fundamentaleigenvalue ~apuncturedsphericalsurface(O ~ 0 )  

Rectangular Calculated fundamental 
grid parameter, N 4, eigenvalue , 2 

50 0.1005 

60 0.0969 

70 0.0942 

80 0.0919 

90 0.0899 

100 0.0883 

120 0.0856 

140 0.0834 

160 0.0816 

180 0.0800 

200 0.0787 

defined by 0 " 2 +  0" = /~, then the function w = r'u(O, O) is a harmonic  function which 

vanishes on the sides of G that  are near O. In order that  w have square-integrable first 

derivatives, choose 0" to be the larger root  of the quadratic,  viz., 0" = (x/1 + 42 - 1)/2. If  2 is 

the fundamental  eigenvalue of  problem (4), then the smallest possible value of 0" results, and 

hence the worst singularity in w. Since w ~ r a as r ~ 0, it is reasonable to expect also that 

v ~ r ~ as r ~ 0, with corresponding asymptot ic  behavior  for the derivatives of v. 

The domain  G has two kinds of  singularities near the vertex O. The surface ~?G is not  

smooth  at each of the edges of the polyhedron which emanate f rom the origin, and this 

geometry produces "edge singularities." The conjectured behavior  v ~ r ~ may  be thought  of 

as representing another  type of  singularity, the "vertex singularity" of v. The edge 

TABLE 9 

Vertex singularities for some degenerate polyhedra 

Slit extension Calculated* Correspondin 9 
parameter fundamental vertex 
0 eigenvalue singularity 

2 a 

0 0 0 
7t/8 0.199 0.170 

n/4 0.265 0.218 

3n/8 0.329 0.261 

n/2 0.396 0.304 

5n/8 0.469 0.348 
3~/4 0,551 0.395 

7n/8 0.647 0.447 
rc 0,75 0.5 

* Theoretical values for 2 and a are given for the limits, 0 = O, ~. 
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singularities are present in the eigenfunctions u of problem (4). The edges of G that emanate 
from O correspond to vertices in the spherical polygon D. If D has an angle c~, then the 
corresponding edge singularity in u is p=/=, where p(x, y, z) is the distance from a point 
(x, y, z) of G to the edge of G passing through the vertex of D with angle e [1]. As e --* 27~, the 
corresponding edge singularity approaches p~, which is the worst possible case. 

The vertex singularity r depends on the geometry of G near the vertex. Table 9 presents 
values of a which correspond to the 2 given in Table 6 for the finest grids (N o = N o = 40). 
The domain G, in this case, is a degenerate "slit polyhedron" which may be described as 
follows. If O is any point in the interior o f  a given polyhedron, then G consists of all the 
points of the polyhedron except those which lie on a plane sector with angle ~ and apex 
situated at O. The point O is considered to be a vertex of the "slit polyhedron." In a similar 
manner, the methods of this paper may be used to calculate the value of r for each vertex of 
any polyhedron G by solving the corresponding eigenvalue problem. 
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